
Multidimensional Analysis of Distributed XML Data.. Sambit Pradhan  
 

 359  

 

 
International Journal of Applied Sciences (IJAS) 

 Singaporean Journal of Scientific Research(SJSR) 

Vol.7.No.1 2015 Pp.359-370 

available at:www.iaaet.org/sjsr 

Paper Received :26-12-2014 

Paper Accepted:18-01-2015 

Paper Reviewed by: 1Prof. L Selvakumar 2. Chai Cheng Yue 

Editor : Dr. Chu Lio 

----------------------------------------------------------------------------------------------------------------------------- -----------------------------------------------------------------------------

-

MULTIDIMENSIONAL ANALYSIS OF DISTRIBUTED XML DATA 
 

Sambit Pradhan, Business Intelligence Consultant, Avid Technology, Inc. 

315 Alexandra Road #03-01 SimeDarby Business Centre, Singapore -15994  

sambit_pradhan@outlook.com 
 

 

 

Abstract — The expeditious proliferation of the internet 

to ubiquity, the infrangible dependence of global 

enterprises on Web services, the universal adoption of 

SOA, cloud computing, social media and online 

publishing has made XML the lingua franca of the 

digital age and has generated a plethora of data in 

XML. The immense popularity of NoSQL and 

document-oriented data stores have also added 

tremendously to this trend. At the same time the need 

for cost effective, low maintenance, simple, customizable 

and highly scalable analytical systems for small and 

medium size businesses,  information and measurement 

companies,  academic and research institutions. 

 

   This paper presents a novel approach for 

dimensional analysis of distributed, disparate, 

heterogeneous, voluminous XML data, the 

Multidimensional Analysis of Distributed XML data – 

MAX – a scalable, high-performance, open source, 

schema-free, document-oriented database. The primary 

objective of the paper is to propose an architecture for a 

document-oriented database, including details of its 

foundation data structures and querying mechanism; 

based on existing standard technologies for 

multidimensional analysis of large set of XML data. The 

Motivations for this approach include simplicity of 

design, generality, cost-effectiveness, usability, 

horizontal scaling, storage efficiency, minimal use of  

 

 

memory and resources. The method has virtually no 

memory limitation or data set size limits and performs 

relatively well in terms of data latency and resource 

consumption. The paper details an implementation of 

this method along with sample performance 

benchmarks. 

 

Index Terms— Data structures, Dimensional Analysis, 

OLAP, XML. 

 

I. INTRODUCTION 

 

A large amount of heterogeneous and distributed 

information abounds, today, as document centric and data 

centric XML.  

 

The former has only few, interspersed mark-ups, the latter 

is solely created and interpreted by application logic. XML 

is extremely powerful in representing both structured and 

semi-structured data. Semi-structured data as XML is 

widely used for as data exchange format, message format 

like SOAP [GHM+07], logging and as storage format. It 

succinctly describes complex information and there are no 

limitation on the type, content and structure of data that can 

be stored as XML. Thus it is used in a wide spectrum of 

application domains: document publication, to 

computational chemistry, health care and life sciences, 

multimedia encoding, geology, and e-commerce. Increasing 

http://en.wikipedia.org/wiki/Horizontal_scaling#Horizontal_and_vertical_scaling


Multidimensional Analysis of Distributed XML Data.. Sambit Pradhan  
 

 360  

 

use of web-based business processes, document-oriented 

database for big data and real-time web services has led to 

further acceptance of XML. This entails the analysis of 

XML data as indispensable. 

 

Most of the existing solutions for the analysis of XML 

data – XML database, XML data warehousing, distributed 

querying etc. – have some caveat. Query processing over 

distributed and fragmented XML data is complex, 

challenging and resource consuming. Analysis of 

heterogeneous data only compounds the difficulties and in 

some cases is impossible to perform. Centralized solutions 

like MOLAP products are not only expensive and 

complicated to develop and maintain, but also can only 

handle limited sized data sets. 

 

MAX – Multidimensional Analysis of Distributed XML 

Data is an integrated suite of software facilities for the 

collation of distributed XML data, processing of the data 

into multidimensional data sets and analysis of the data 

thereof. The platform embodies the application of novel 

and pioneering methodologies and data structures on well-

established open source platforms using standard and 

popular programming paradigms. MAX is a highly 

scalable, high-performance, open source, schema-free, 

document-oriented bare bones database that facilitates the 

analysis of distributed, heterogeneous XML data and XML 

based repositories. 

 

Although this platform, in its current state, is not intended 

to compete with or be a substitute for the industry leading 

solutions; it has tremendous potential to grow into a viable 

low cost commercial product with small to medium 

organizations as the target users. 

 

II. RELATED WORK 

 

The individual indexing, storage, XML processing and 

data structures used and described in this methodology are 

popular industry standards and are widely used in database 

and web applications. However, the core concept of this 

paper and the methodology “segregated index architecture” 
– The splitting of a relational data set into separate data 

structures that maintain partial relation information, 

keeping the dimensional and factual elements segregated, at 

the same time providing for highly effective indexing and 

data storage capabilities, applied to extremely large data 

sets, to the best of my knowledge and belief is a singular, 

original and novel approach that has not been proposed 

earlier. 

 

III. MULTIDIMENSIONAL ANALYSIS OF DISTRIBUTED XML 

DATA – AN OVERVIEW 

 

Provided here, is a detailed description of the MAX 

platform, its architecture, components, functioning, 

technical specifications and brief illustration of the 

conceptual mechanism of query execution that form the 

conceptual basis of the platform in order to provide a 

proper perspective when reading the remainder of this 

document. 

 

One of the major tenets of the platform was minimal and 

efficient use of memory. Memory accesses are a common 

bottleneck in applications and memory is rapidly becoming 

a precious resource in data processing environments. 

Memory is also a major limiting factor in the size of dataset 

that can be handled in the application. Improving on the 

efficient use of memory and reducing memory dependent 

operations can drastically reduce the costs of execution and 

remove limitations on the platform. The GroupBy-

Aggregate followed by sorting requires the most amount of 

memory in a sql operation. Indexing is another process 

where often, for large datasets, it is not possible to perform 

index construction efficiently on a single machine. 

 

The max platform uses a “segregated index architecture” 
as an effective solution to the issues related to memory 

usage with high volume of data analysis. Rather than 

maintaining the dimension data, fact data and indexing in a 

single object the components are stored as different objects. 

The query in turn access each object in parallel and 

exclusively and then combines the result set from each of 

the operations to generate the resultant dataset. 

 

The cardinal component of the MAX platform is the 

‘Cube object'. A user queries the cube object using a 

simplified application to perform analysis on datasets of 

interest. The aforementioned “segregated index 
architecture” is implemented as the framework of the cube 
object. The cube object is a combination of three files. Each 

file stores a specific combination of data and index. A 

query targeted at a cube, access and processes each of the 

objects independently to generate intermediate result 

datasets; and finally combines the intermediate datasets to 

generate the resultant dataset. Each cube object consists of 

three objects: Cube Data object, Cube Bitmap object and 

the Cube Index object. A Cube object is created from XML 

data sources in conjunction with two metadata objects: The 

Fig. 1.  Complete life cycle of an Analytic Project. The project starts 

with the identification of the XML data sources, followed by the 

creation of the dimension and measure object and finally the cube 

object. After the creation of the Cube object a user can query the 

Cube object for analyzing data sets. 



Multidimensional Analysis of Distributed XML Data.. Sambit Pradhan  
 

 361  

 

dimension object and the measure object. The dimension 

and measure objects provide the metadata framework / 

model for the creation of the cube object. They provide a 

layer of logical abstraction from the underlying XML data 

sources for the cube object.  

 

A user works in the purview of an ‘Analytic Project’. An 
analytic project consists of multiple cubes and the 

dimension objects related to a subject area under analysis. 

There are four steps in the process of creation of an analytic 

project from the source XML data: (i) Creation of the 

Dimension object (ii) Creation of the Measure object (iii) 

Creation of the Cube object. After the creation of the Cube 

object as part of an Analytic project a user can query the 

cube object. 

 

The query used to retrieve information from a cube 

object is called the “Analytic Query”. The Analytic Query 
is made of three clauses: The SELECT clause, the WHERE 

clause and the GROUP BY clause. During the execution of 

the query the query is first broken down into its constituent 

clauses and the final result set is achieved by processing 

each clause separately and combining the outputs from 

each process. 

 

The concepts and methodologies expounded in the MAX 

platform can be implemented on several technology stacks 

such as LAMP, WAMP, MAMP, SAMP etc. using a 

variety of languages like C, C++, Java, Pearl, PHP and 

others. As a proof of the concept and to test the validity of 

the thesis a simple but effective platform was developed. 

The complete platform has been developed in Python 3.4.0 

because of its rapid prototyping, quick turnaround, rich 

feature set, platform independence and dynamic semantics. 

The platform uses well established methodologies, 

programming paradigms and standard protocols like XML 

shredding, bitmap indexing, inverted indexing and standard 

data structures like text and YAML. A complete GUI 

driven user interface has been implemented for all 

interaction with the platform to illustrate the simplicity and 

ease of use that can be achieved. 

 

IV. THE DIMENSION OBJECT 

 

A dimension is a collection of reference information 

about a measurable events or "facts". Dimensions 

categorize and describe data warehouse facts and measures 

in ways that support meaningful answers to business 

questions.  Data (facts) can be filtered and grouped (“sliced 
and diced”) by various combinations of dimension 
attributes. They form the very core of dimensional 

modeling.  More specifically ‘Conformed dimensions’ 
allow facts and measures from disparate sources and 

different areas of the business to be integrated, categorized 

and qualified in the same way across multiple facts 

and/or data marts. The mainstay of a dimensional model is 

the conformed dimension.  

The foundation block of the MAX platform is the 

‘Dimension Object’. A dimension object is a file that 
houses the dimension elements and the relationship 

between the elements (level and hierarchy). The creation of 

the dimension object is the first step towards the conception 

of a multidimensional model. A dimension object is created 

for every dimension that is to be used in the analysis.  The 

dimension object file is It has a file extension of .dim that 

identifies it as a dimension object file. E.g. A product 

dimension can be names as productline.dim. The 

application identifies each dimension by the file name and 

the extension. 

 

A dimension object is intrinsically a YAML associative 

array file that maintains the entire dimension element set, 

with the dimensional hierarchy maintained by outline 

indentation. The YAML format was preferred due to 

excellent human readability, easy maintenance, 

compactness, feature, flexibility in data presentation, 

multiple documents within a single stream and popular 

support by platform and languages. 

 

The dimension objects strictly observe the YAML 

structure: Hierarchy is maintained by outline indentation, 

all elements are left justified, the child elements are 

indented one step further to their parent, all sibling 

elements have the same indentation. Sequence items are 

denoted by a dash and key value pairs within a map are 

separated by a colon. There is a single root element “ALL”. 
All elements are children of the root element.  Every 

dimension entry is a key-value pair. The colon maps the 

key to the value. The left hand side of the colon is the key 

and the right hand side the value. The value can be 

enclosed in single quotes incase of special characters. 

 
 

An entire dimension object file is read as a ‘nested list’ in 
the MAX application. The data structure follows a standard 

list/array item with nested elements. This provides for 

 
Fig. 2.  Example of a dimension object file: sample “Geography” 
dimension.  

http://searchsqlserver.techtarget.com/definition/data-mart


Multidimensional Analysis of Distributed XML Data.. Sambit Pradhan  
 

 362  

 

extremely fast “nested for loops” iterations that facilitate 
data roll up during query execution. 

 

 
 

A. The Dimension Creation Wizard 

 

   The ‘Dimension Creation Wizard’ is a GUI based utility 
developed in Python 3.4.0 that creates Dimension Object 

Files directly from XML data sources. Since the XML data 

source themselves contain the dimension elements as 

nodes, they are an excellent source for creating the 

dimension. The application generates hierarchical YAML 

files with dimension elements by directly referencing the 

XML data nodes. The process is completely automated and 

implicit. Element level and relationship are managed and 

created automatically by the wizard. The primary process 

consists of shredding the XML file / data at a particular 

node to extract the element / node value. The looks up all 

child elements of the node and writes them as child 

dimension elements in the dimension file while maintaining 

the outline indentation in the YAML file. 

 

 
V. THE MEASURE OBJECT 

 

The Measure is a special type of dimension that holds the 

measurement attributes. Measures are numeric values (e.g., 

units of sales or total sale amount) associated with the 

business data. Data analysis usually involves dimensional 

reduction of the in-put data using various aggregation 

functions. Like the Dimension object the Measure object is 

a YAML file that maintains all the measure elements. The 

difference between the two is that the dimension object 

stores the elements in an indented structure that represents 

the dimension hierarchy; in contrast, the elements of the 

measure dimension are maintained in a single root level, 

with no hierarchy. 

 

The measure dimension contains two types of elements: 

standard measure element and derived measure element. 

The standard measure elements are direct references of the 

factual fields in the source data. The derived measure 

elements are, as the name suggests, derived from the 

combination of standard measure elements, arithmetic 

operator and numbers. A standard measure element is a 

simple entry in the dimension. A derived measure element 

has two parts: a key and an expression. The parts are 

mapped by a colon, placed between the two. The left has 

side of the map is the key of the element. The right hand 

side is an expression. The expression consists of reference 

to other elements in the measure dimension and arithmetic 

operator and/or numbers. Between two elements, or a 

combination of an element and a number an arithmetic 

operator is placed in parenthesis. The order of operation of 

the expression strictly follows the BEDMAS rule. Complex 

expressions can be written by nesting expressions within 

square brackets. Such an expression is evaluated starting 

from the inner most nested expression to the outer most 

expression.   

                       [A (+) B (*) [ D (–) E ]] 

Algorithm1: Dimension_Object_Create(XML Src,Node, 

Xpath) 

Input :XML Source, XML Node, XPath expressionof 

the NODE 

Output : Dimension Object file 

1: CREATE <Dimension>.dim // Create the empty 

Dimension Object file 

2: WHILE ( NOT END OF XML source stream) 

3:    // READ Single XML Document from source stream to 

temp object 

4:   Temp_doc = READ(XML Src.document) 

5:  // Search for the target node using the Node and Xpath 

Expression 

6:   IF ( search(‘Node’ , ‘Xpath’) = TRUE) 
7:      Write ‘Node : <Node Value>’ to <Dimension>.dim 
file 

8:       // Search for all Children     

9:       IF ( search(‘ChildNode’) = TRUE) 
10:            Write ‘ChildNode : <Node Value>’ to 
<Dimension>.dim file 

11:  END 

 
 

Fig. 3.  The dimension object file as a standard Python nested array in the 

MAX application. Every child element is a nested array in the parent array. 

 
Fig. 5.  Dimension Creation Wizard. 

Fig. 4.  Algorithm for the creation of the Dimension Object. 



Multidimensional Analysis of Distributed XML Data.. Sambit Pradhan  
 

 363  

 

By maintaining a separate measure dimension we can 

specify complex calculations for creating advanced 

measures that are not available in the data source. These 

advanced measures are processed and stored within the 

cube in the process of creation of a cube; these complex 

calculations do not need to be performed during query 

execution; thus they drastically reduce query operations and 

query overhead during query execution to fetch data from a 

cube. 

 

The measure object also facilities the aggregation, 

combining and calculation of factual data from different 

data sources. E.g.’Cost’ from an inventory dataset can be 

combined with ‘Orders’ dataset and ‘Payment’ data set, 
each from different sources, to calculate the margin for a 

purchase transaction. A measure object can only be created 

manually. 

 

VI. THE CUBE OBJECT 

 

The Cube object contains the actual data that is used by 

the analytic query to compute the final result set. The Cube 

Object is made of three files: the Cube Data object file, the 

Cube Bitmap object file and the Cube Index object file. The 

three files complement each other and consecutively take 

part in successive stages of the query processing. All the 

files are created simultaneously, during the creation of the 

cube object in the cube designer. The Cube Data object file 

has an extension .cdo, the Cube Bitmap object file has an 

extension .cbo and the Cube Index object file has an 

extension .cio. 

 

For each cube the name of the cube is suffixed to the 

three object file. E.g. For cube Revenue the object files 

would be named as Revenue.cdo, Revenue.cbo and 

Revenue.cio. The name of the cube has to be unique within 

the. The application recognizes the cube objects by their 

name. 

 

The Cube Data object file only stores the factual data at 

the leaf or root level or the most granular level available. 

The relation between the dimensions and the fact data are 

stored in the Bitmap and the Index object file. The Bitmap 

and Index object file store partial and complementary 

aspects of the relationship and only the combination of the 

both provide the. 

Central to the creation of the Cube object is the Virtual 

Data Set. Although all the three Cube objects are directly 

created from the data source, it is convenient to visualize a 

logical data structure that provides a context for the 

creation of the cube object – Virtual Data Set(VDS). The 

VDS is discussed in detail in the next section, as the 

process of creation of the VDS is nothing but the logical 

depiction of the actual process of creation of the Cube 

object. 

 

A. The Virtual Data Set 

 

The Virtual Data Set(VDS) is a conceptual two-

dimensional relational representation of data that is 

intrinsically generated in the process of cube object 

creation from data sources. The VDS is similar to a data 

base relational table in structure, in that, it consists of tuples 

that represent a set of ordered and related data and fields 

that provide the ordered structure for the tuples. The Virtual 

data set is neither a process nor a physical structure. It is 

not a temporary file, has no persistence and does not 

physically manifest anywhere in the platform. The VDS 

provides the logical view of the and for the visualization of 

the internal data structure that servers as the source for the 

creation of the cube object. The functionality of the virtual 

data set is similar to a data base view. A single tuple of the 

VSD may contain fields from a single or more data source 

depending on the number used to generate the cube. The 

only addition to the incoming data from the data sources is 

the allocation of a row-id to every single incoming virtual 

record. This row-id is the unique identifier of the tuple and 

is the equivalent of a surrogate key. The indexing of the 

tuples across all the objects is based on this row-id. 

 

A virtual data set is created from the combination of 

XML data source, dimension object and the measure 

object. Together they form a logical dimensional model – 

The data sources as fact tables joined together by 

 
 

Fig. 6.  Example of a measure object file. This is a sample “Finance 
measure” dimension. There is no hierarchy in the Measure Dimension. 



Multidimensional Analysis of Distributed XML Data.. Sambit Pradhan  
 

 364  

 

dimension objects and measure object as dimension table. 

Data from multiple sources are joined together across nodes 

belonging to a single dimension using the dimension object 

and the measure object. 

 

 
 

B. The Cube Bitmap Object File 

 

The Cube Bitmap Object is a specialized two dimensional 

array that has a single column for every row of data in the 

virtual table and row for every unique dimension element in 

the virtual table. The Bitmap Object represents membership 

of a dimension element in a VDS tuple. A row is created 

for each dimension element for all of the dimensions in the 

VDS. Each column represents a distinct row within the 

VDS. The Bitmap Index stores partial relationship of a 

VDS tuple. A node or cell is formed at the cross junction of 

a VDS row (column) and a VDS dimension element (row). 

If a dimension element is present as a key value in a row 

then the particular node is populated with 1, representing 

the availability of the dimension element in the row, else 

the node is defaulted to 0. By populating the nodes formed 

by the combination of all the rows and all the dimension 

elements with 1 and 0 a relationship mapping is created. 

The advantage of using this particular data structure and 

methodology is that complex set operations like 

intersection, union and set-theoretic differences, conditions 

specified in the WHERE clause (or  

inline query) of a query, can be computed extremely fast 

and with minimal use of resources using bitwise logical 

operation like AND, OR, XOR and NOT to resolve 

complex conditions. 

 

 
 

 
Fig. 7.  Overall architecture of the MAX application platform. 

 
 

Fig. 8. Illustration of creation of a Bitmap object from a virtual data set. Each 

dimension element in the VDS is transposed into a row and each row in the 

VDS into a column in the Bitmap object. 



Multidimensional Analysis of Distributed XML Data.. Sambit Pradhan  
 

 365  

 

 
 

The Cube Bitmap Index object file is a human readable 

text file that stores the index bits in a nested array structure. 

There is a single parent array with child arrays as its 

element. Each child array represents a single row in the 

Cube Bitmap object file and structurally forms a bit vector. 

The first element of each bit vector is the dimension 

element; this is the key of the bit vector. The key is used to 

select the relevant bit vectors from the complete data set, 

bitwise operation are performed on the selected bit vectors 

to compute the resultant data set. The Bitmap Index Object 

has an extremely small footprint on disk. 

 

The cube Bitmap Index object is used in the ‘WHERE’ 
clause of the analytic query. After relevant bit vectors are 

selected using the vector key, bitwise operation are 

performed on the bit vectors to provide a resultant list of 

row-ids of valid rows that satisfy the conditions stated in 

the WHERE clause.  

 

       Space complexity of the Bitmap Object: Let V be a 

VDS. Let |V| be the cardinality of VDS V i.e. the number 

of distinct tuples in V. Let D represent a dimension of V 

and |D| the cardinality D i.e. the number of dimensions in 

V. Let A represent an attribute of dimension D and |A| the 

cardinality of A i.e. the number of distinct attributes in 

dimension D. Thus, the space complexity in terms of bytes 

for building a bitmap object on an attribute A of dimension 

D is given as |�� �������ݏ :| =  |�||�||�|8   
The time complexity of the bitmap object (worst case) is: 

�������ݐ =  �ሺ|�||�||�|ሻ 

 

C. The Cube Index Object File 

 

The file maintains spatial information of VDS rows 

that have similar dimension element attributes. The Cube 

Index Object File is a record level inverted index. The file 

stores the mapping of each dimension element to its 

location in the data file i.e. its occurrence in the rows. 

However, instead of indexing the dimension element per 

row, the inverted index data structure indexes the rows for 

each dimension element. There are two constituent in 

each entry of the index file. The first is the dimension 

element which is the key of the entry and the second is a 

list of row-ids of the records that have the element as a 

dimension value. Similar to the creation of the Bitmap 

Index Object the Index Object file is created sequentially 

and incrementally, record by record, with the addition of 

index values for each incoming record. Each new 

incoming virtual data set record is processed from the left 

to right. 

 

The Cube Index Object is the exclusively used in 

GroupBy-Aggregate process of a query. The advantage of 

using this particular data structure and methodology is that 

there is absolutely no requirement of sorting, ordering and 

grouping of records in the process during group by 

operations since the records are already grouped by 

dimension elements in single lists. The Cube Index Object 

is used in conjunction to produce the final resultant row set 

that is used to fetch the actual data from the Cube Data 

Object. The Cube Index object file is a human readable text 

file that stores inverted index as nested array. There is a 

single parent array with child arrays as its element. Each 

child array represents a single row in the Cube Index object 

file and structurally forms vector – element vector. The first 

element of each vector is the name of the dimension that 

the element belongs to. The second element of the vector is 

the dimension element itself. The combinations of these 

two elements form the key of the vector. This key is used to 

select the relevant element vectors from the complete data 

set.  

Algorithm 1: Cube_Bitmap_Object_Create(VDSRow[]) 

Input : Virtual Data Set Row Array 

Output : Cube Bitmap Object file 

1: CREATE <Dimension>.cbo // Create the empty Bitmap 

Object file 

2: WHILE ( NOT END OF VDS ) 

3:      READ VDSRow[] into TEMP_ARR[] 

         // Assign VDSRowID to temp variable 

4:      v_ROWID = TEMP_ARR[0]     

5:      FOR (i=1; NOT END OF TEM P_ARR[]; 1++  )          

              // Assign Dimension Element to temp variable 

6:           v_TEMP_ELEMENT = TEMP_ARR[i] 

             // Search for Element in the Index Object File 

7:           IF(Element Exists) 

                    THEN APPEND v_ROWID TO ELEMENT 

LIST 

             //Else Create a new element entry and a 

corresponding empty list 

                    ELSE  CREATE ELEMENT KEY, CREATE 

EMPTY LIST 

8: END 
Fig. 9.  Algorithm for the creation of the Cube Bitmap Object. 



Multidimensional Analysis of Distributed XML Data.. Sambit Pradhan  
 

 366  

 

 
 

 
 

 
D. The Cube Data Object File 

 

 The Cube Data object stores the measurable data against 

the row-id of the VDS tuples. It contains no dimension 

element or relationship between the fact and the dimension. 

The cube data object file is a pipe delimited human 

readable plane text file. The first row of the file contains 

the header for the columns: Row-id, Measure1, Measure2 

etc. The application sequentially writes each of the measure 

values and corresponding row-id into the Cube Data Object 

file. Each single row is read as a single array in the 

application. Array operations are performed on the data 

arrays in conjunction with result set from the bitmap and 

index objects processes to provide the final result. 

 

 

 
VII. ANALYTIC QUERY EXECUTION  

 

A user executes an “Analytic Query” on a Cube Object to 
perform analysis on the data.  Unlike traditional relational 

data bases the analytic query is procedural: it has a fixed set 

of steps to follow-through in order to compute the result. 

Since we are dealing with a single cube in each query there 

is no requirement for query optimization operations and 

execution plans. The analytic query is designed and 

executed from, a GUI based application, the “Analytic 
Query Wizard. 

 

A. Analytic Query Wizard 

The Analytic Query Wizard is a GUI application designed 

in Python 3.4.0 to query the Cube Object for analysis. The 

application provides for designing all the clauses in a 

standard SQL statement: SELECT clause, WHERE clause, 

FROM clause, GROUP BY clause and the ORDER BY 

clause. The application generates a procedural query, 

accesses relevant objects, performs the necessary 

operations on the objects, combines intermediate results 

and finally displays the output of the query in a new 

window. 

 

 
 

Fig. 10.  Example of a Cube Index Object file, created from a sample 

“Opportunity” dataset. For the “Region” dimension element “AMER” the 
row-id list consist of rows 1, 2, 3 as AMER occurs in each of the rows. 

Similarly for each dimension element a corresponding row-id list is mapped. 

 
 

Fig. 11.  Example of an Index object read as a standard Python nested 

list/array in the application. Every child element is a nested array in the 

parent array. 

 
Fig. 12. Each element vector of the Cube Index object consists of two 

components: A vector key – that identifies the element vector and a list of 

row ids. In this example the rowid list is made of rows 1,2,3. The rows 

1,2,3 have the Region’s dimension attribute value as ‘AMER’. 
 

 
Fig. 13.  Physical structure of the Cube Data object file. The first column is 

the ROWID followed by the measure values. Each column is separated by 

a delimiting special character - “Pipe”. 

 
 

Fig. 14.  Example of a Cube Data Object file, created from a sample 

“Opportunity” dataset. Only the ROWID and the measures(facts) are retrived 

from the VDS and stored as the Cube Data object. There are no reference of 

the dimensions in the Cube Data object. 

 



Multidimensional Analysis of Distributed XML Data.. Sambit Pradhan  
 

 367  

 

 
 

B. Steps in the query execution 

     

The Analytic Query statement is first broken into its 

constituent clauses and each clause is processed 

individually, in parallel and in sequence, and finally the 

result sets are combined to provide the query result set. The 

query maximizes parallel processing facilities of the 

platform and performs index processing operations 

simultaneously. 

 

The steps in query execution process are illustrated with the 

aid of a sample VDS and a sample analytic query: 

 

 
 

# Sample Analytic Query 

 

SELECT  

REGION, TYPE ,AMOUNT, FCST_Q1 

FROM REVENUE_CUBE 

WHERE  

REGION ⊆ {‘AMER’} AND ACCOUNT ⊆ {‘Defense’} 

AND TYPE ⊆ {‘Complex’,’Standard’} 

GROUP BY REGION, TYPE 

 

STEP1: Identify and access the appropriate Cube Bitmap 

object and Index Object file by using the cube name, 

Revenue.cbo and Revenue.cio 

 

STEP2: Begin simultaneous process threads in parallel, 

one for the Bitmap object and one for the Index object. 

STEP2(A): Processing the Bitmap Object File for 

computing the conditions specified in the WHERE clause. 

The requisite bit vectors from the Revenue.cbo file are read 

as arrays in the application. Bit wise operations are 

performed on the array element to compute if a particular 

row meets all the conditions stated in the WHERE clause of 

the  file dimension rows that are present in the where clause 

of the query. A ROWID vector is generated for the rows 

whose result bit is true. For the sample VDS and the sample 

analytic query under consideration the operation is as 

illustrated: 

 

 
 

 

STEP2(A): Processing the Cube Index Object File for 

computing the conditions specified in the GROUP BY 

clause. 

The Cube Index Object file is used in grouping the 

dimension elements. The file maintains spatial information 

of VDS rows that have similar dimension element 

attributes. The application selects the element vectors from 

the file that are specified in the GROUP BY clause of the 

analytic query. For the sample VDS and sample query: 

Element vectors with vector keys – AMER, GERMANY, 

UK, Complex & Standard – corresponding to the group by 

clause of grouping data by Region and Type. 

 

 
 

STEP3: Processing the resultant datasets from the Cube 

Bitmap process and the Cube Index process (STEP2(A) and 

STEP2(B)) to generate intermediate arrays consisting of 

row-ids that are common to both the datasets. 

 
 

Fig. 15.  Example of a dimension read a standard Python nested list/array in 

the application. Every child element is a nested array in the parent array. 

 
 

Fig. 16.  Bitwise logical operation on Bitmap bit vectors to generate a result 

set that represents rows that satisfy the WHERE conditions. The Result set 

is then mapped to the actual ROWID’s to generate Bitmap Row Array. 

 
 

Fig. 17.  A subset of element vectors, which have their keys matched to the 

dimensions specified in the group by clause are selected from the Cube 

Index object 



Multidimensional Analysis of Distributed XML Data.. Sambit Pradhan  
 

 368  

 

Each Element array from the Cube Index object process is 

intersected with the single ROWID vector from the Cube 

Bitmap object process to select the row-ids common to both 

the result sets – generating a set of arrays that satisfy both 

the WHERE and the GROUP BY clause of the analytic 

query. These arrays, called the Data Row Arrays, are 

temporary intermediate data sets that are further processed 

in the ‘Aggregate Data Row Array’ process before being 
finally used with the Cube Data object. 

 
 

Algorithm 1: Process Bitmap and Index 
(IdxElmtARR[],BitRowARR[]) 

Input : Element Index Arrays, Bitmap Row Array 

Output : Resultant Element Group Arrays: 

DataRowArr[] 

1: WHILE (NOT END OF IdxElmtARR[]) 

// READ a single Element Index Array into temporary array 

2:      TEARR[] = IdxElmtARR[] 

// Compare the rowids in the Element Array and the Bitmap 

Rowid array and allocate the resultant rowids to a new 

output array : DatRowGrpARR 

3:      DatRowArr[] = INTERSECT(TEARR[], 

BitRowArr[]) 

4: RETURN(DatRowArr[]) 

5: END 

 

 
 

STEP4: Grouping and organizing the Data Row Arrays 

into Grouped Data Row Arrays. 

The element arrays from one of the dimension is intersected 

with each element array from other dimensions to generate 

dimensionally grouped arrays that contain a list of row-ids 

that are dimensionally grouped. 

 

 
 

STEP5: Processing the Cube Data object to retrieve 

measure data, combine the measure data with appropriate 

dimensional groups and present the resultset to the user. 

In this final step of query processing. Each Grouped Data 

Row Array is queried against the Cube Data Object to 

retrieve the rows. The measure values from the Cube Data 

Object is stitched with the respective dimension groupings 

of the Grouped Data Row Arrays to finally generate the 

appropriate Analytic Query output. 

 

 
 

 

 

VIII. PERFORMANCE: COMPARATIVE LOAD TESTING 

 

   To properly understand the performance tradeoffs 

between MAX and traditional databases, relational and 

columnar, a comparative benchmark of the platforms under 

exact hardware specification at different workloads for 

query latency and resource consumption was performed. 

The following interesting aspects: (1) Query latency and 

resource consumption for varying data loads; (2) Query 

latency and resource consumption for varied number of 

dimensions ;(3) Query latency and resource consumption 

for varying dimension cardinality; Finally we look at the 

space efficiency of the platform in comparison with others. 

    A Windows Server 2012 R2 on Intel Xeon E5-2687WV2 

 (8 cores, 3.40 GHz) with 32 GB (DDR3-1333) memory 

was chosen as the suitable platform to perform the 

comparative performance analysis. Two of the industry 

 
Fig. 18.  Illustration of the Join operation of the AMER Index Element 

Array with the Bitmap Row Array. The rowids 1,2,3 are common to both 

set and thus are the only ones available in the resultant Data Row Array 

Fig. 19.  Algorithm for the creation of the Cube Bitmap Object. 

 
 

Fig. 20.  Resultsets from the output of the Cube Index object and the Cube 

Bitmap object processes are joined on the rowids’ to produce Data Row 
Array. 

 
 

Fig. 21.  Data Row Array elements of the “Region” dimension are joined 

with elements of the “Type” dimension on the rowids’ to generate 
dimension combinations of element that meet the conditions stated in both 

the GROUP BY and WHERE clause. 

 
 

Fig. 22.  Grouped Data Row Arrays are joined with the Cube Data object on 

the ROWIDs’ resulting in the combination of the dimension elements in the 

grouped data row array with the facts in the Cube Data object. 

http://en.wikipedia.org/wiki/Windows_Server_2012


Multidimensional Analysis of Distributed XML Data.. Sambit Pradhan  
 

 369  

 

leading relational databases – Oracle 11g, SQL Server 2012 

Enterprise Edition and a columnar database – Vectorwise 

3.0 were chosen as suitable RDBMS for the purpose of 

comparative testing. DELL Benchmark factory was used to 

evaluate the databases with Ingres ODBC driver for 

Vectorwise 3.0. The python psutil was used to retrieve 

performance statistics and resource utilization for the MAX 

platform. Inspiration for the benchmark was drawn from 

the industry standard TPC-H benchmark framework. While 

such tests can never take the place of proof of concepts 

done using the exact use cases and infrastructure that a new 

platform is targeting, they are useful indicators of the real-

world viability of the application. 

    The synthetic data set use for the benchmarking 

simulates data from a real-world sales opportunity 

generating cloud based CRM system. 

 

CASE I: Mean Query latency for varying number of 

records – This test examines the time taken to execute a 

query for difference number of records. The query latency 

is measured in seconds and the numbers of records are in 

millions. 

 

 
 

CASE II: Mean Query latency for varying number of 

dimensions, for constant number of records. This test 

examines the time taken to execute a query for different 

number of dimensions for a fixed number of 5 million 

records .The query latency is measured in seconds. 

 
 

CASE III: Mean Query latency for varying number of 

dimension cardinality, for fixed number of dimensions, and 

fixed number of records. Number of records – constant at 5 

million, number of dimension fixed at 10. 

 

 
 

CASE IV: Data base size comparison for varying number 

of records. Data is consistent for all platforms. The total 

database size under consideration is the sum of the space 

occupied by the database and the index on disk. The size on 

physical disk is measured in Megabytes(MB). 

 



Multidimensional Analysis of Distributed XML Data.. Sambit Pradhan  
 

 370  

 

 
IX. CONCLUSION 
 

The novel approach illustrated in this paper provides 

insight into the innovative ways of storing and retrieving 

data. The platform has tremendous potential for further 

improvement, development and introduction of additional 

features. After the successful development of the proof of 

concept on the python platform, as illustrated in this paper, 

currently, an extended version of this platform is under 

development using C++ on the LAMP stack. 

Simultaneously new desirable features: better web 

integration, user data access security, enhanced SQL 

features like order by, IN etc. and temporary cache storage 

are being researched upon to be integrated on the MAX 

platform.  

 

REFERENCES 

 

[1] M. T. ¨Ozsu and P. Valduriez, “Distributed Database 
Design”, ”Design Issues”, “Decomposition & Data 
Localization”, “Query Processing”, in Principles of 

Distributed Database Systems, 3rd ed. Springer, New 

York, 2011, pp. 46-138 

[2] Jan Palach, “Parallel Algorithms”, “Threads and 
concurrent features”, ”Multiprocessing and process 
pool”, in Parallel Programming with Python, Packt 

Publishing, Birmingham, UK, 2014, pp. 11-93 

[3] Priscilla Walmsley, “Selecting and joining in 
FLWORs”, “Advanced Queries”, in XQUERY – 
Search Across a variety of XML data, O'Reilly Media, 

Sebastopol, California, 2007. 

[4] Mark Summerfiled, “File Handeling”, “Processes and 
Threading”, “Networking”,” GUI Programming”, in 
Programming in Python 3 , 2nd ed. Addison-Wesley, 

Boston, USA, 2010,  pp. 289-476 

[5] Brian Benz, John R. Durant, “XML Parsing With 

DOM”, “XSL Transformations”, “SOAP”,”WSDL”, in 

XML Programming Bible, Wiley Publishing, Inc., New 

York, 2009, pp. 3-291 

[6] Python Software Foundation | Python.org In 

https://docs.python.org/3/ 

[7] XML path language (XPath) 2.0. In 

http://www.w3.org/TR/xpath20. 

[8] XQuery 1.0: An XML query language. In 

http://www.w3.org/TR/xquery. 

[9] XQuery 1.0 and XPath 2.0 formal semantics. In 

http://www.w3.org/TR/query-semantics. 

[10] XQuery 1.0 and XPath2.0 data model. In 

http://www.w3.org/TR/query-datamodel. 

[11] XQuery implementation. In 

http://www.w3.org/XML/Query#implementations. 

[12] Stefano Seri, Christos Faloutsos, Richard T. Snodgrass, 

V.S. Subrahmanian, Roberto Zicari,”Temporal 
Databases”,”Complex Queries and 
REasoning”,”Indexing Methods”,”Multimedia 
Indexing”, in Advanced Database Systems, Morgan 

Kaufmann Publishers, Inc., California, USA, 1997, pp. 

97-265, 295-314 

[13] D Florescu and D. Kossmann, “Storing and Querying 
XML Data using and RDBMS” IEEE Data 

Engineering Bulletin, 22(3), 1999, pp. 27–34 

 

 

http://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Jan+Palach&search-alias=books&text=Jan+Palach&sort=relevancerank
http://www.amazon.com/dp/1783288396/ref=rdr_ext_tmb
http://www.amazon.com/s/ref=rdr_ext_aut?_encoding=UTF8&index=books&field-author=Brian%20Benz
http://www.amazon.com/s/ref=rdr_ext_aut?_encoding=UTF8&index=books&field-author=John%20Durant
http://www.amazon.com/s/ref=dp_byline_sr_book_4?ie=UTF8&field-author=Richard+T.+Snodgrass&search-alias=books&text=Richard+T.+Snodgrass&sort=relevancerank
http://www.amazon.com/s/ref=dp_byline_sr_book_5?ie=UTF8&field-author=V.S.+Subrahmanian&search-alias=books&text=V.S.+Subrahmanian&sort=relevancerank
http://www.amazon.com/s/ref=dp_byline_sr_book_6?ie=UTF8&field-author=Roberto+Zicari&search-alias=books&text=Roberto+Zicari&sort=relevancerank

	I. INTRODUCTION
	II. Related Work
	III. Multidimensional Analysis of distributed XML Data – An Overview
	IV. The Dimension Object
	A. The Dimension Creation Wizard

	V. The Measure object
	VI. The Cube object
	A. The Virtual Data Set
	B. The Cube Bitmap Object File
	C. The Cube Index Object File
	D. The Cube Data Object File

	VII. Analytic Query Execution
	A. Analytic Query Wizard
	B. Steps in the query execution

	VIII. Performance: Comparative load testing
	IX. Conclusion
	References

